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ABSTRACT 

The purpose of this work is to study the joinings of simple systems. First 

the joinings of a simple system with another ergodic system are treated; 

then the pairwise independent joinings of three systems one of which is 

simple. The main results obtained are: (I) A weakly mixing simple sys- 

tem with no non-trivial factors with absolutely continuous spectral type 

is simple of all orders, (2) A weakly mixing system simple of order 3 is 

simple of all orders. 

1. In t roduc t ion  

Given three ergodic systems (measure preserving transformations) and an ergodic 

pairwise independent joining a of the three, it is a basic problem in ergodic theory 

to find conditions under which tr is independent (see e.g. [H]). We treat here a 

special case of this general problem. 
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Let k > 1 be an integer, a k-fold self-joining a of an ergodic system (X, p, T) 

(i.e. a is a measure on a product of k copies of X denoted X 1 , X 2 , . . . , X k  

invariant under the product transformation and projecting onto tt in each co- 

ordinate) is called an off-diagonal if a is the image of/~ under the map x 

(~, (x) ,~(x) , . . . ,~ok(x))  of X into I IL,X/ ,  where each q0/is an element of the 

group C(X) of automorphisms of (X, tt, T). a is a p roduc t  of  off-diagonals if 

there exists a partition (J~, . . . ,  Y,,,) of {1, . . . ,  k} such that 

(i) For each g, the projection of a o n  IIiEjtXi is an off-diagonal 

(ii) The systems (II/ej, X/, 1 < g < m) are independent. 

(X, p, T) is simple of  o rder  k (or k-simple) if every k-fold ergodic self-joining 

of X is a product of off-diagonals. We say that it is simple when it is simple of 

order two. (See [R], [V] and [3-R,1]). 

Recently, J. King [K] has shown that when (X,/~, T) is weakly mixing and 

simple of order 4 then it is simple of all orders. In this work we show, using 

different methods, that in fact weak mixing (w.m.) and simple of order 3 imply 

simple of all orders (Theorem 5). If in addition to weak mixing we assume 

that (X, ~t, T) admits no non-trivial factors with absolutely continuous spectral 

measure then simple implies k-simple for all k > 2 (Theorem 4). In particular, 

this is the case when (X, #, T) is rigid (in the sense of IF-W]). 

The main lemma (Lemma 2) used in the proofs of Theorems 4 and 5, deals 

with the following situation. We are given a 3-fold ergodic, pairwise independent 

joining a of a simple system (X, #, T), an ergodic system (Y, v, T) and a weakly 

mixing system (Z, X, T). The lemma shows that if for some n # 0 the joinings a 

and a,, = (id x id × T")a are not orthogonal over Y x Z (see definition below), 

then a is the independent joining i.e. the product measure tt × v × X. (Actually 

the statement is slightly stronger; also see [M] for a topological version of this 

lemma). It is then shown (Theorem 3) that under these circumstances when a is 

not independent, (X, ~t, T) admits a non-trivial factor with absolutely continuous 

(with respect to Lebesgue measure on T) spectral type. 

Here are some conventions we use. When denoting a measure preserving system 

the corresponding a-algebra is omitted. All sets and functions that appear are 

assumed measurable. We denote by T the acting transformation in every system 

considered, with the exception of product systems where T x T or T × T × T 

etc. are used. C(X) will denote the group of measurable automorphisms of the 

system (X, #, T); A# will denote the image of # under the map x ~ (x, x) of X, 
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onto the diagonal of X x X (and similarly for higher orders). For z E X , / ~  is 

the point mass at x. The map projx X x Y ~ X is the projection on the X 

coordinate and similarly for Y. 

In section 2 some basic notations and results on 2-fold joinings are given. With 

the exception of Lemma I these results can be considered well known. In section 

3 the joinings of a simple system with an ergodic system are studied (Theorems 1 

and 2). These results are closely related to results in [J-R,1] especially Theorem 

4.1 of this paper. The basic Lemma 2 and Theorems 3 and 4 are proved in section 

4, while Theorem 5 is proved in the last section. 

The history of this paper is somewhat complicated. Two of the authors 

(E.G. and D.R.) first wrote a paper containing some of the results of the present 

one (mainly Lemma 2, the simplicity of all orders for rigid simple systems, and 

an observation on the existence of infinitely many pairwise independent factors 

related to the simple system in case it is not 3-simple). 

The third author (B.H.), independently, obtained all the results of the present 

work. When we learned about the existence of each others works, the original 

paper was withdrawn and the present one, incorporating the two works, was 

written. 

2. Joinings of Two Systems 

Given a joining a of the systems ( X, p, T) and (Y, v, T) we denote by a* the 

corresponding joining of (I/, v, T) and (X, p, T); thus a is a measure on X × Y 

whereas a* is defined on Y × X. The disintegration of a over (Y, z/) is the 

representation a = f a y  × $~ dt/(y) where y ~ o r is a measurable T-equivariant 

map of Y into the space of probability measures on X, such that p = f aydv(y). 
We denote by E~, : L2(X,p) ~ L2(Y,~/) the conditional expectation operator 

given by 

Eof(y) = J f(x)da,(x) for , - a . e .y .  

Equivalently Ea is defined by 

f Eaf(y)g(y)du(y) = f f(x)g(y)da(x, y) 

(f C L2(X, p), g E L2(Y, v)). It is easy to check that E~,. : L2(Y, v) ---* L2(X, p) 
is the adjoint of E,,. Let L~(X,p) be the subspace of L~(X,p) consisting of 
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functions of zero integral. Then or is independent (i.e. a =/~ x u) iff the restriction 

of E~ to L2o(X, I~) is the zero operator. 

Now let z be a joining of (Y, u, T) and (Z, A, T). Define the (conditionMly 

independent) p r o d u c t  o f  or and  r over  (Y, v,T),  denoted or x ~', to be the 
Y 

measure on X x Y x Z given by 

/ • or x r = Cry x ~ x 1"y du(y) 
Y 

or equivalently by the equation 

[ f(x)g(y)hO)dor x ~" = [ E./(y)" g(Y)" E~-h(y)dv(y) 
J Y J 

( f ,  g, h bounded on X, Y and Z respectively). 

The measure on X x Z given by 

r o or = f × r;a (v) = projx  ×z(or T) 

is called the c o m p o s i t i o n  of or and r .  It is easy to check that Eros = ErEa. 

The joinings or of (X, •, T) and (Y, v, T), and r* of (g,  A, T) and (Y, u, T)  are said 

to be o r t h o g o n a l  or i n d e p e n d e n t  r e l a t ive  to  Y if ~-oor is the product measure 

# x A. The joining or is orthogonal to itself relative to Y iff it is independent. 

Suppose now or is an ergodic joining (i.e. the system (X x Y, or, T x T) is 

ergodic), then either for u-a.e, y, Cry is a continuous measure or there exists a 

positive integer r such that for u-a.e, y, Cry is an atomic measure equidistributed 

on a finite subset of X of cardinality r. In the latter case (X x Y, or, T x T) is 

an r to one extension of (Y, v, T) and we say that a is of f ini te  t y p e  (or more 

precisely of t y p e  r). 

LEMMA 1: Let or and z be two ergodic joinings of the ergodic systems (X,  #, T) 

and (Y, u, T) and Jet A C X x X be the diagonM. Then r* o or(A) > 0 iff r = or 

and or is of finite type. In this case z* o a( A ) = ~ where r is the type of or. 

Proof." Since 

r* c a ( A ) =  f a, x r , ( A ) d v ( y ) =  f ~ a , { x } r , { x } d u ( y )  

it follows that when r = a and this joining is of finite type r, then r* o or(&) = 

r ~  = r. Conversely suppose r* o or(&) > 0, then the above formula shows that 

both a and r are of finite type, say s and t respectively, and that  

o or(zx) = card(A,  n 
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where A~ and B w are the finite suppor ts  of a~ and l"v respectively. Since T A  r = 

AT, and T B  U = BT, v-a.e, it follows tha t  the subset E = { (z ,y )  : z E Ay M B~} 

of X x Y is T x T invariant. Since moreover 

f -l fcard(A, nB,)du(Y) a(E)  = a,  x 6,(E)dv(y)  = s 

= o > o ,  

the ergodieity of  a implies a(E) = 1. Thus  card (Au N Bu) = s, whence Ay C By 

for u -a . e .y .  By symmet ry  also B~ C A U and we conclude tha t  a = r and tha t  a 

is of  type  r = s = t. I 

3. Joinings of  a Simple System and an Ergodie One 

For the rest of this paper  we shall assume tha t  (X, p,  T)  is a simple system. 

THEOREM 1: Let a and a ~ be two ergodic joinings of (X,  #, T)  and (Y, u, T), 

where (X, IJ, T) is simple and (r,  u, T) ergodic. Then either a and a' are orthog- 

OhM over Y or there exists ~ E C ( X )  such that a' = (qo x id)a. 

Proof: Let 3' = a x a ~ be considered as a measure on X × Y x X '  where X ~ is a 
Y 

copy of X.  Let 7 = fa wdP(w) be the ergodic decomposi t ion of  7. The  elements 

of f~ are ergodic joinings of  X,  Y and X I. Let f/0 C f~ be the subset of those 

w E f~ for which the project ion of w on X x X ~ is not  the p roduc t  measure p x /d .  

Clearly P(I~0) = 0 implies d* o a = p x p; i.e. a and a ~ are or thogonal  over Y. 

Assume now P(f~0) > 0; then for P-a.e.  w E ~0 we have 

(i) the project ion of  w on X x X '  is an ergodic joining # /~ x # ' ,  hence of 

the form A~ = id x ~(A~,), where ~ = ~ ,  E C ( X )  is considered as an 

isomorphism of X onto X ' .  

(ii) the project ions of  w on X x Y and Y x X I are a and d* respectively. 

Write  w = f 6~ x wydu(y) where wy is a measure on X × X I, then it follows 

tha t  f w , d g ( y )  = A~ and we conclude tha t  for u-a.e, y, w~ is suppor ted  on 

A ~* = ( id x qo)(A). Now 

= _/(projx × 6,d (u) a n d  

= [ 6, x (pro jx ,  w,)du(y) d* 
J 

imply tha t  a I = (~ × id)a. | 
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THEOREM 2: Let a be a non independent ergodic joining of the simple system 
(X, I~, T) and the ergodic (Y, u, T). Then there exists a positive integer r and 
a compact subgroup K of C(X) such that for the corresponding group factor 

(X, I~, T) '~, (U, p, T) ~- (X/K,  I~, T) we have 

(i) a is the relatively independent product of (X, I~, T) and (U x II, r, T x T) 

over (U, p, T)  where r is the image of a under 7r x id. 

(ii) r is a joining of finite type r and for every f ,g  • Lg(U,p) 

J Erf(y)ETg(y)du(y) = 1_ J f(u)g(u)dp(u). 
r 

Proof: We use the notations introduced in the proof of theorem 1, and let a -- a' .  

Since a is not orthogonal to itself we conclude that P(120) > 0. Let K be the set 

of those ~ q C(X)) for which (~ x id)a = a. Clearly K is a closed subgroup of 

C(X) and it is not hard to see that P I~0 induces a finite K-invariant measure 

on K.  A theorem of A. Weil now implies that K is compact (the topology is 

that of convergence in measure, see IV]). Denote by (X, p, T)  ._Z., (U, p, T) the 

quotient map and quotient system obtained modulo K,  and let r be the image 

of a under r x id. If r = f 6u × rudp(u) is the disintegration of r over ((.7, p) then 

for f • L2(X, I~), g • L2(Y, u) and ~o • K 

f ® = y ) = / ( / o  ; 

hence denoting by m the Haar measure on K 

f ® gda = / / ( f  o ~)(z)g(y)da(x, y)dm(~) 

= / Ef(u)g(y)dr(u, y) 

= f ( f  y(~x)dm(~,))(fg(u)d~.(u))dp(u) 
= / f ® g  v × r ,  

where E : L2(X, IJ) ~ L2(U,p) is the conditional expectation operator. Thus 

a = # × r and (i) is proved. 
U 

Since, with obvious notations, for P-a.e. w 6 12\12o, projvxu, w = p x p' and 

projv×u,W = Ap for w 6 f/0 (a = a'  implies that  %a~ , in (i) in the proof of 
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theorem 1, must be the identity.) we get: 

r = proju×u,  7 = / p r o j u x u ,  wdP(w)  7'* 
o 

= P(no)Ap + (1 - P(no) )p  x p ' .  

Since P(f/0) > 0, lemma t yields the fact that  r is of finite type r where P(f/0) = 

! Moreover for f , g  E L~o(U,p) 
r ° 

Erf(y)" Erg(y) = / f(u)g(u')dT t* o r(u, u') 

= ~ f f(u)go,)ap(u). , 

4. Pairwise Independent Joinings 

The situation considered in this section is that of an ergodic joining a of three 

systems (X, #, T),  (Y, u, T) and (Z, A, T)  of which the first is simple, the second 

ergodic and the third weakly mixing. We first have the following corollary of 

theorem 2. 

COROLLARY: I f Y  and Z are independent but X and Y are not, then X x Y and 

Z are independent. 

Proof'. By Theorem 2, (X x Y, 9, T x T) is a distal extension of (Y, v, T). On the 

other hand since (Z, ,~, T) is w.m. the extension (Y x Z, v x ,~, T x T)  --, (Y, v, T)  

is relatively weakly mixing. By [Fu] these two extensions are relatively disjoint 
overY; i . e ,  a = 0 x ( v x A ) = 0 × A .  II 

Y 

LEMMA 2: Let a be an ergodic joining of X,  Y and Z for which X and Z as we11 

as Y and Z are independent. / f / o r  some n # O, a and a ,  = (id x id x Tn)a  are 

not orthogonal relative to Y x Z (i.e. a~, o a # I~ x it), then X x Y and Z are 

also independent. 

Proof." By the corollary we may assume that also X and Y are independent. 

Suppose that for n # 0, a and a,, are not orthogonal over (Y x Z, v x A, T x T), 

then according to theorem 1 there exists ~ E C ( X )  such that a ,  = (~ x id x id)a 

and it follows that F a  = a for F = ~ x id x T - " .  

Let f be a function on Y; for every function h on X x Z: 

/ E ~ f ( x , z ) h ( x , z ) d p ( x ) d A ( z )  = / f ( y ) h ( x , z ) d a ( x , y , z )  
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= / f(y)h(x,z)dFa(x,y,z) = / f(y)h(~z,T-nz)da(x,y,z)  

= / E~f(x,z)h(~vx, T -n z)dp(x)dA(z)= f E~f (~  - l x , T  n z)h(x,z)d#(x)dA(z) 

and E,,f is a ~-1 x T n invariant function. 

Since (Z, A, T) is weakly mixing E~.f depends only on x. This means that E~j 

is the conditional expectation of f on X,  which by independence of X and Y 

is a constant. We thus have shown that X x Z and Y are independent and th~ 

proof is complete. I 

Notice that  in this lemma the assumption that Y and Z are a-independenl 

was used tacitly when it was assumed that an is a joining of X and Y x Z. Fo~ 

this assumption means that the Y x Z projection of a is id x T n invariant. Thk, 

is the case iff Y and Z are independent. 

THEOREM 3: Let (X, p, T) be simple, ( Y, T, v) ergodic and ( Z, A, T) weakly mix- 
ing. If there exists an ergodic pa/rwise independent joining a of the three system,~ 

which is not independent then ( X, p, T) admits a non-trivial factor whose maxi- 
mal spectral type is absolutely continuous with respect to Lebesgue measure m 
o n T .  

Proof." We consider a as a joining of X and Y x Z. Let (U, p, T) be the factor 

of (X, p, T) whose existence is proved in theorem 2 and let 7" be the projection 

of t~ on U × Y × Z. Since U is non-trivial and since X and Y × Z are relatively 

independent over U, it follows that r is not independent. On the other hand r 

is clearly pairwise independent. We are going to show that the maximal spectral 

type of (U,p,T) is absolutely continuous. For n E Z let rn = (id x id x Tn)r ;  

then lemma 2 implies that for n ~ 0, r,~ o~" = p x p. Let f E L2o(V,p), we need to 

show that the correlation measure a !  corresponding to f (i.e. the measure on T 

whose Fourier coefficients are given by 3f(k) = f f(T~u)7(u)dp(u) (k e Z)), is 

absolutely continuous with respect to m. 

Let F = Err  E L2(Y x Z, v × A) and let w be its correlation measure for the Z 2 

action on Y x Z; i.e. w is the positive measure on T 2 whose Fourier coefficients 

are given by 

$(p, q) = [ F (TPy, Tqz) F(y, z)dv(y)d)~(z) (p, q • Z) 
J 
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Let r = f r(y,z)dt,(y)d~(z) be the disintegration of v over Y × Z, then for 

(p, q) • Z 2 we have 

F (TPy, Tqz) = E, / (Try,  Tqz) 

= / f(x)d(~'(T'u,T'z)(X) 

= / f(x)dV(TxT)'(Y,T'-tz)(X) 

= / f ( z ) d ( T  x T)Vr(y,Tq-,z)(x) 

= //(TPx)dr(,,T,-t,)(x) = E~,_, (TPf)(y, z). 

Let 8 be the image of w under the map (s, t) ~-* s + t of T 2 onto T.  Then for 

p • Z we have ~(p) = ~(p, p) and by theorem 2 

O(p) = ~(p,p) = / E~ (TP f) (y, z)E,-f(y, z)d~(y)dA(z) 

and c~! = rS. It therefore suffices to show that 6 << m. 

Consider now ~(p, q) for p # q. In this case, 7-~_p o r = p × p and we get 

~(p, q) = / E~,_~ (TPf) (y, z)E~-/(y, z)dv(y)d)~(z) 

=/f(TPu)-](v)dr;_p o v(u,v)  

= f f(Tru)dp(u). /-](v)dp(v) =O . 

It follows that w is invariant under the maps (s,t) ~ (s + u,t - u) of T 2, for 

every u E T,  and therefore its two natural projections onto T are invariant under 

all translations of T.  This means that these projections are constant multiples 

of m. Since w is absolutely continuous with respect to a product of two measures 

on T (e.g. the product of the maximal spectral types of (Y, u, T) and (Z, ~, T)), 

we deduce that  w is absolutely continuous with respect to the product of its two 

natural projections (an exercise). Combining these results we get w << m x m, 

and therefore, finally 0 << m. | 
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THEOREM 4: If (X, It, T) is simple weakly mixing and does not admit a non- 

trivial factor with absolutely continuous spectral type, then ( X, p, T) is simple 

of all orders. 

Proof." By induction using theorem 3. | 

Remarks: 1. Theorem 2 of [HI states that every pairwise independent joining 

of r > 3 weakly mixing systems with purely singular spectrum is independent. 

Of course this implies that a weakly mixing, simple system with purely singular 

spectral type is simple of all orders, a fact which follows from theorem 4 as well. 

2. A system (X, p, T) is rigid if there exists a sequence nk / z o o  such that 

lim(TnkA f3 A) = It(A) for every measurable subset A of X IF-W]. This clearly 

implies that the maximal spectral type of (X, It, T) is singular. Thus every w.m. 

rigid simple system (such as the one described in [J-R,2]) is simple of all orders. 

(This can be deduced directly from lemma 2). 

5. S impl ic i ty  of  H ighe r  Orde r s  

THEOREM 5: A weakly mixing system which is simple of order 3 is simple of all 

orders. 

LEMMA 3: Let (X,p,T)  be w.m. and simple of order 3, (X' ,p ' ,T)  a copy of 

(X, #, T) and (Y, v, T) an ergodic system. Then a pairwise independent ergodic 

joining of these three systems is necessarily independent. 

Proof." Let a be a palrwise independent ergodic joining of X' ,  X and Y such 

that  a ~ p' x # x u. Let n ~ 0 and let a,, = (id x T n × id) a. We consider the 

joining w = a × an; w is a measure on X'  × X x Y x X"  where X" is another 
X x Y  

copy of X. The projection of w on X'  x X"  is a* o a which by lemma 2 is equal 

to It' x It". It follows that the projection of w onto X'  x X × X"  is pairwise 

independent and therefore, by assumption, is independent. Thus for bounded 

functions f ,  g, h on X, X '  and X"  respectively 

f f ( z ) d i t ( x ) f g ( z ' ) a . ' ( x ' ) f  h(x")dp"(x") 

= / f(x)g(x')h(x")dw(x', x, y, 

[ u)E.h U) 
d 
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In particular for n # 0 and every bounded function h in L0 ~ (X",  p") and bounded 

function u on X we get, by taking f (z )  = u (Tnx) ~(x) and g = 

0 -- [ E.h  (T"x, y) u (T"x) E ~ ( ~ ,  y)~(z)dp(x)dv(v) . 

Summing from 1 to N 

0 = "~ E E~h (Trim, y) u (Tnx) E~g(z, U)~(z)dp(z)du(y), 

and by the ergodic theorem 

o= f l f E,,h(z,u)u(z)dp(z)12d,,(u) . 
Thus f E,h(~,  y)=(~)d~(~) = 0 v-a.e, and for every bounded v on r we have 

/ E~,h(x,y)u(x)v(z)dp(x)dv(y) = / h(z')u(z)v(y)da(z°,z,y) = O. 

This means that cr is independent contradicting our assumption. | 

Proof of Theorem 5: Suppose (X, p, T) is simple of order k > 3; we shall show 

it is simple of order k + 1. Let a be an ergodic joining of k + 1 copies of X 

denoted X1 , . . . ,Xk+I .  If for some i ~ j the projection of ~r on Xi × Xj is an 

off-diagonal, then by an induction hypotheses, a is a product of off-diagonals 

mad we are done. Thus we may assume that a is pairwise independent. By the 

induction hypothesis the projections of ~ on X1 × " "  x Xk and X2 × . . .  × Xk+l 

are the independent joinings. Hence cr can be viewed as a pairwise independent 

joining of X1, X2 x . . .  x Xk and Xk+l. Lemma 3 applies and we conclude that 

a is independent. This completes the proof. | 

Remarks: 1. Using the same method by which lemma 3 was proved, one can 

show that when (X, #, T) is w.m. and simple of order 3 and (Y, z,, T), (Z, A, T) 

are w.m. systems then every pairwise independent ergodic joining of the three 

systems is independent. 

2. A simple argument of relative disjointness analogous to that of corollary 1, 

can be used to generalize some of the preceding results to distal extensions of 

simple systems. Let (X, #, T) be an ergodic distal extension of a simple system. 

Then for this system the assertions of corollary 1, theorem 3 and lemma 2 are 

valid. 

If furthermore (X, #, T) has the property that every ergodic palrwise indepen- 

dent 3-fold self-joining is already independent, then every pairwise independent 

k-fold self-joining of (X, #, T) is independent (k > 3). 



142 E. GLASNER ET AL. Isr. J. Math. 

References 

IF-W] 

[H] 

[J-R,1] 

[J-R,2] 

[K] 

[Rl 

[Vl 

H. Furstenberg, Disjointness in ergodic theory, minimal sets and a problem in 

diophantine approximation, Math. Systems Theory 1 (1967), 1-49. 

H. Furstenberg and B. Weiss, The finite multipliers of infinite transformation, 

Springer-Verlag Lecture Notes in Math. 688 (1978), 127-132. 

B. Host, Mixing of all orders and palrwise independent joinings of sys terns with 
singular spectrum, Israel J. Math. 78 (1991), 289-298. 

A. del Junco and D. Rudolph, On ergodic actions whose self-joinings are graphs, 

Ergodic Theory and Dynamic Systems 7 (1987), 531-557. 

A. del Junco and D. Rudolph, A rank-one rigid simple prime map, Ergodic 

Theory and Dynamic Systems 7 (1987), 229-247. 

J. King, Ergodic properties where order 4 implies infinite order, Israel J. Math., 

to appear. 

D. Rudolph, An example of a measure-preserving map with minimal selfjoinings 
and applications, J. Analyse Math. 35 (1979), 97-122. 

W. A. Veech, A criterion for a process to be prime, Monatshefte Math. 94 

(1982), 335-341. 


